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LIMITING SPECTRAL DISTRIBUTION FOR A CLASS OF RANDOM MATRICES

Y. Q. Yin
ABSTRACT
Let X= {xij :i, 3 =1, 2,...} be an infinite dimensional random
matrix, T be a p X p nonnegative definite random matrix independent of
X,for p=1, 2,... . Suppose % tr Tg - Hk a.s.as p*+*ofork=1, 2,...,
and § Hzi/Zk = «, Then the spectral distribution of
A = l X XTT
p n ppp
where Xp = [Xij t:i=1,.00op; j=1,...,n], tends to a nonrandom limit

distribution as p > ©®, n > © but p/n + y > 0, under the mild conditions

that X'’s are i.i.d. and EX2 < o,
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\ 1. INTRODUCTION

The spectra for random matrices of the form-; XPXF"Tp are important

in many fields. Many results are available for the special case where

Tp = Ip = identity, (e.g., see Grenander-Silverstein (1977), Wachter
(1978), Jonsson (1983), and Yin and Krishnaiah (1983)).

In Yin and Krishnaiah (1984), the case when Tp is an arbitrary

positive definite matrix was investigated for the first time. 1In that
|
paper, it was assumed that the entfies of Xp = [xij ti=1,...,p;

j=1,...,n] are 1. i.d. and normal.”)A new combinatorial technique was

A
developed in -that fy paper to prove the existence of ehe limiting spectral

distribution.

Al
The-abeve work can be generalized in two directions. First, we can

P
generalize to the case when X_  has isotropic columns. This work was done

P

/_—_\\—"l
in Yin and Krishnaiah (1983) and Bai, Yin, and Krishnaiah® (1984). 1In the

.va 14
second direction, we can prove the result by assuming that %ﬂ has i.i.d.
/3 F&,'r
entries with minimum moment requirements. The-present-work is devoted

to this goal. 1In this paper, we have succeeded to prove the existence

of limiting spectral distribution by assuming only that the second

moment exists. The keys to reach this goal are (1) truncation technique

and (2) sophisticated combinatorial techniques. The two-stage truncation

method works in proving the main result. To prove the main result, we

have to generalize the notion of Q-graph to a new kind of graphs

M-graphs. Some properties of M-graphs are developed here.

In this paper, we have succeeded to prove the existence of the

'?a'.s x convergence.

limiting spectral distribution in the sense of

= o
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2. PRELIMINARIES

Let A be 2 p x p matrix with p real eigenvalues 21 < in...il

We define_a distribution function by

 (x) -%]{1 )

iiX}I’

wvhere [{...}| denotes the number of elements in the set {,..}. In the
sequel, FA(x) will be referred to as the spectral distribution of the

matrix A.

In this paper, we are interested in proving the convergence of the
A

spectral distributions {F Py} ¢f a sequence {Aé} of random matrices to
a nonrandom distribution F(*). Here Ap is of the form

A =1 X X'T
P n PPP

and is defined on a common probability space (2, F,P). The definitions
of Xp and Tp and basic hypothesis are given below.
a) X = {xij : 1, =1, 2,...} is an infinite random matrix of
2
] . . < . =
i.i.d. entries EX11 0 Xp [xij

is a submatrix of X; here n = n(p) »= and p/n > y for some

1<1<p; 1<3<n]

finite number y > 0.

(B) For each integer p > 1, Tp = [ 1<1i, j<plisapXxp

£

nonnegative definite random matrix and Tp is independent of

X. Here to =t (p) may depend on p.

3 1]

(C) There exists a sequence (Hl, HZ,...) of positive numbers such

that
-1/2k
EHZR = +o, and (2.1)
(0,) % tr TE +H_as p >>, in pr., for any k > 1, or (2.2)
(DZ)A% tr T; > H_as p >, a.s., for any k > 1. (2.3)




o 3
e
g Theorem 2.1 Suppose the conditions (A), (B), (C), (DI) (or (Dz))are
. true. Then the spectral distributions of Ap = % XpXI')Tp converge to a
Y nonrandom distribution function in pr. (a.s.).
> Remark ~ According to the Strong Representation Theorem (Bai-Liang

(1984)), if (Dl) holds, we can reconstruct a sequence of random matrices

- {Tp} such that
i (D Tp and Tp have a common distribution, for each p.
(2) tri; > Hk’ a.s. for each k, as p +»,

» 1, 3 =1, 2,...} is independent of Tp’ for each p.

_::: €)) {Xij

i Thus, to prove Theorem 2.1, we need only to prove the a.s. part under

the conditions (A), (3), (C), and (DZ)'
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3. SOME RESULTS IN GRAPH THEORY

At first, we generalize the notion of Q-graph introduced in
Yin and Krisﬁnaiah (1984).

Let V ;;d E be two finite sets, called the vertex set and edge set,
respectively. The numbers of elements of V and E are denoted by v and k,
respectively. A multigraph is a single-valued mapping I' : E - V x V,

The multigraph will be denoted by (V,E,[') or simply by I.

eV, B, € V, we say that B, and B

1 2 1 2
are the ends of e. We do not distinguish (Bl’ BZ) and (BZ’ Bl)' Note

If e € E, T(e) = (Bl, BZ)’ B
that for two vertices Bl’ B2 in V, there may be several edges e in E such
that T(e) = (Bl’ BZ)' Given B .V, let n, be the number of edges with
different ends and one of the ends is B and let n, be the number of edges
+ Zn

whose ends both are B. Then the number n 2 is called the degree of

1
B and it is denoted by deg(B).
Definition A multigraph (V,E,[') is called an M-graph, if
(1) for each B € V, deg (B) > 2,
(2) there is a partition W = {Cl""’cw} of the vertex set V,
the elements of W are called classes, such that
(3) for each class, the sum of degrees of vertices in it is even, and

(4) T is W-connected.

In condition (4), "W-connectedness'" is defined as follows. For each

pair of classes C_ and C,, there are classes C_ =C_ , C_, C_ ,,..,€ =¢C
a b a a, 3 a, ay b
such that C_ and C 1=0,1,...,d - 1) are directly connected, i.e.
34 31+1
there is an edge e € E such that one end of e is in C; and the other in Ca-+1
i i

An M-graph is denoted by (V,E,[,W), or simply by ([,W), or more

simply by T if there is no confusion. The number of classes in W will

be denoted by w.
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In an M-graph (V,E,T,W), we denote by Gi the number of vertices with

degree i. Evidently, v1 = 0 and

V, + v, Fecety = v (3.1)

e 17 V2 % =V

' v1 + 2v2 +---+2kv2k = 2k, (3.2)

Recall that v and k are the cardinal numbersof V and E, respectively,

A sequence of vertices {B

bl, Bbz,...,Bbc} is called a chain if anyv
two neighboring vertices Bb , Bb (1 =1, 2,...,c = 1) are two ends
i i+l
of an edge and By ,...,Bb are of degree 2,
2 c-1
A chain {B_ ,...,B, } is called singular, if degB. > 2 and degB, > 2.
b1 bc b1 bc
A chain Bbl, Bbz,...,Bbc is called a free cycle if Bb1 = Bbc and

b, = 2, too. A one-vertex free cycle is called a loop. If the ends
1

of an edge belong to a chain, we say that this edge is an edge of the

degB

chain.

Lemma 3.1 In an M-graph (I,W), the number of singular chains equals

(k - VZ)'

Proof Obvious.

Lemma 3.2 In an M-graph (T,W), if each vertex has degree 2, then T
is a collection of free cycles, and the number of free cycles f <k-w+1. ‘

Proof For a proof, see Yin and Krishnaiah (1984). ‘

Lemma 3,3 In an M-graph (T,W), if v, < k, then

1
ff—i(k+v2)-w'

Recall that f, w and v, are the numbers of free cycles, classes and vertices
of degree 2, respectively. f
Proof We apply induction on f.

Suppose f = 0. Let m be the number of classes which contain onlv one

vertex with degree 2 and no other vertex. Since 7 is an M-graph, for




each B ¢ V, degB > 2, by definition condition (3) and (3.2), we have

2m + 4(w - m) < 2k.

Note m < Vys we get .

1
Wii(k + V2)

Nlo—-

0=1f<5k+v,)-w

Suppose there are f + 1 free cycles in our graph. Let Z be a free

cycle with its vertex set V, and edge set Ez, and let W, be the set of

Z Z

all those classes in W which contain vertices of Z only,
Now delete Z from our M-graph. Consider the residue graph with

its vertex set V' = VV,, edge set E' = E\E,, I'* =T|_, = the restriction

E'
of Ton E', ' : E' » V' x V', Let W' ={CAV' :CeWW}. Thus, W

is a partition of V' into disjoint classes. Since v, < k, i.e. there is

at least one vertex in V whose degree is greater than two, so when we

delete Z, this vertex is not deleted, hence V', E' and W' are not empty.

The new graph (V',E',T') is not necessarily W'-connected. But W' can

be split into disjoint subsets : Wi,...,Wé, say, such that if Vi is the

set of vertices of V' which belong to some class of Wi, Ei = {e e E': I'(e) € Vi},
Ti = T'IEi, then (V!, Ei, Ti, wi) are M-graphs, and classes from different

i

] | ) A} ) ]
at least ome graph (Vi, Ef, Ti, W) with vy, < IEi[

number of vertices with degree 2 of the graph Ti. Without loss of gener-

W! are not directly connected through edges in E', Since v, < k, there is

T
, where Vg is the

ality, we assume that

‘Ei‘ > Véi’ fori=1, 2,...,c, c > 1,
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and

[E{[ = Véi’ fori =c+1,...,d.

By induction hypothesis, if fi is the number of free cycles of Ti,

1 .
£, iﬁ§(|Eil + Véi) - !Wil, i=1, 2,...,c,

and by Lemma 3.2,

-1 - . =
f, < |E'i| - lwi| + 1 _5([15{[ +vh) ‘WU +1,1i=c+1,...,d.

Summing up with respect to i, we get

Wl < SUE] +vp - £+ @ - 0

here vé is the number of vertices with degree 2 in V'. We show that

lw,| < |E,| - d. In fact,

W, = {cew: c\wv, = ¢} = Wr\Wk*

where

Wk

fcew:cnuv, # ¢,

Wh*

{CEW:CﬁVz#db,CﬂV'#d)}.
But, classes are disjoint and nonempty, so

k] < v, | < |E

Z

On the other hand, for each i = 1,...,d, there is a class C € W such that

C contains a vertex of V; and a vertex in Vz. In fact, given any class

C' of Wwith C'N Vi # ¢, let C, be an arbitrary class of WZ. Since the

0

whole graph is class-connected, there are classes CO’ Cl""’cg = C' of

W such that Cj—l # Cj are directly connected for j = 1,...,g. Let Cj be

the first class in the above sequence which contains a vertex of Vi.
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Suppose e £ E connects Cj-l and Cj, i.e. T(e) N Cj—l # ¢ and T(e) N Cj # .

If T(e) M Cj is a vertex of Vi, I'(e) N Cj—l must also be a vertex of Vi,

contradicting the minimality of j. But Cj cannot contain any vertex of V!,
YA

for L # 17 so T(e) N Cj is a vertex of V,. Thus, Cj is a class with the

required property : it contains a vertex of VZ and a vertex of Vi. But

Wi, i=1,...,d, are disjoint, so

[wxx| > d,
Therefore

Also, it is evident that
[Bl = [E"| + [E, ], (W] = [Ww'| + [w,],

and

v, = vé + |EZ

Therefore,

1
w<_IW'I+|EZ|—dii(!E'l+v'2)-f+(d-c)+|EZ]-d

2UE] +v) - £-c

I A

1
5(k + VZ) -f-1,

which completes the proof of Lemma 3.3 by induction.
The following lemmas are useful in the proof of Theorem 2.1. Some
of them are well-known and are quoted below without proof except Lemma 3.4.

Lemma 3.4 If in the sum
S = Zfl(al)...fc(ac)gl(brbz)...gd(bZd_l, bog)

each index occurs at least two times, bZi—l 3 b2i’ i=1, 2,...,d and the

indices run over {1, 2,...,p}, then




9
P |% P P
2 2, 2, 2,. ., - 2,. .
" < z fl(l)... Z fc(l) Z gl(l,J)... Z gd(l,J),
i=1 i=1 i,j=1 i,j=1

Here indices a = b means that a and b always take the same value.
gsgéE:QWe will prove this lemma by induction on ¢ + d and by using
Schwartz's Inequality.
Now, let ¢ +d > 2, we shall discuss the following two cases.

Case 1 ¢ = 0, We have

\ 2

2 2 ' S
sP< 18 ) T (1 8p(ogs b)) eegg (g ys b)) -
b1b2 bsz

/

If for some i > 1, {bZi-l’ bZi} = {b bz} then g, can be taken out of the

bracket. If for some i > 1, {b

1°
2i-1° bZi} f\{bl, bz} has only one element,
for fixedb1 and b2’ g; can be regarded as a new f function. 1In any case,
the product under the inner summation has less factors than that in S
and has the required form. By induction we can get the conclusion of

the lemma.

Case 2 ¢ > 1. We have

12 P/ 2
2 2
st< ) fiG@) ] LEy(ay) .. f (a)dg by by)egy(byy 1o b2d)> .
al=1 al=1\

If for some i > 1, a, = ars then fi(ai) can be taken out of the bracket.

i

If for some j > 1, bj = ar, for fixed al,the [l—%;l}-th g function can

be regarded as a new f function. 1In any case, the product under the
.. inner summation has less factors than that in S and has the required fdrm.

By induction, we have proved the lemma.

o 20 uih ogn ek e ae
P

vy
. .
o AL
Ve

. . . i
ot Lot o

Lemma 3.5 (Ky Fan) Let A and B be two p X n matrices and F, G be

the spectral distributions of AA' and BB', respectively. Then
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NF - ¢cfl = s§plF(x) - G(x)| <_% rank(A - B).

Lemma 3.6 (J.von Neumann(1937)) Let A and B be two p X n matrices and

{Xi}iki} be the eigenvalues of AA' and BB' respectively. Then

p
|erAB'| < EJXiEi
i=1

Here A, > *22--aixp.2 0 and k; > k, 3..,zkp.

From Lemma 3.6 it follows immediately that

2 P P
— 2
J WX, =Yk = YO, +k) -2 ) Vi k
jop 1 i 4o 1 i 4o 11
< trAA' + trBB' - 2trAB' = tr(A - B)(A - B)'. (3.3)

Definition (Dudley). Let G and F be two probability measures.
Define D-metric of G and F to be
o]
D(F.G) = Y || £,dF - | £ dc| ZL
i i
i=]
where {fi} is a sequence of functions which is uniformly dense in the set
of functions from R! to [0,1] satisfying [£(x) - £(y)] < |x - y| for any
x and y. It is well known that the topology deduced by D-metric in the
space of all one-dimensional distributions is the same topology of weak
convergence, (see Dudley (1966)).
If F and G are spectral distributions of AA' and BB' respectively,

then from (3.3) we get

p p
2 1 2 1 21 2
D(F.G) 2 5 121“1 -k D% < EiZI(J_xi + k) ;&f«f—xi - Vi)
r (AA' + BB') tr(A - B)(A - B)'. (3.4)

"'-7'
Lemma 3.7 (Hoeffding (1963)). Let En be a binomial random variable

with parameters n and n. Then for any € > O,

. RN _w. T ST TR TR R R LT T e e T T e e Lt e
o e e e e e RO
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P(l;l; £, - n| > ey < 2exp{-n e2/(n + o) L.

Lemma 3.8 Let B = {Bl,...,BV} be a partition of the set {1, 2,...,27}.

Then consider the sum

S=)t, . t, . ..t
A B P S1

where i,, i,...,1,, run over the set {1, 2,...,p} but subject to the condi-

19

tion that if a, a' belong to the same set B

for some b, then ia i,.

b a

Consider a multigraph (V, E, '), where V = B, E = {el,...,ez}, and
I(e,) = {B(21), BQ21 + D} (B(a) ¢ B iff a € B). If (V, E, I) is an
M-graph with some partition W = {Cl,...,Cw} of vertices, such that deg(Bi) > 2

for at least one i, then
S = O(pz-w), a.S..

Proof Summing up with respect to all free indices (i.e. indices which

occur just twice in ti i ti i ...ti i or equally, those indices ia’ for
273 7475 2971
which a € B, for some b with le] = 2). Then we have
n n (ay) (a)) (b)) (b))
S=trT1...trTf2t1...trt1...ts.
P P ™™ memy glhl gshs

Here Nyse.0,Ne are the lengths of all the f free cycles, a;5...5a  are the
lengths of singular chains the two ends of which are identical, and bl""bs

are the lengths of the singular chains their ends are not equal,

a (a .
g; 3 hl""’gs E: hs’ and Tp (tij)' By definition of a singular chain,

each of the indices ml,...;%? gl,...,gs, hl""’hs occurs at least three
times., By Lemma 3.4,

n 2a 2a 2b 2b
2 .l.(tr Tpf)z

n
s“ < (er Tpl)2

tr T eeostr T r tr T 1... tr T S.
P P P p

Since tr T; = 0(p) for any ¢ > 1,

. - O<}f+(l/2)(r+sf\’

o
IA l. l‘ A‘
.
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- By Lemma 3.3, and Lemma .3.1, if v, is the number of B

o 2 with |Bb| = 2,

b

b 1
. f 3_2(2 + v

—w’

2)

> u

»

»

r+s= (L - v2)

’ .
L .

“l,l

Therefore,

Ay

- O(p(1/2)(z+v2)+(1/z)(z-vz)-w)

-,

L}
. .

l—w)

.' 4'

LA AR
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4, PROOF OF THEOREM 2.1

1/2 A ] A
Let V. =T o, F =FF, A ==XX'T . Define X,, = X,.I 1
P P P p npppt 13 iR l<anl
and Xp =[Xij; i=1,...,p; j=1,...,n]. Let Fp(x) be the spectral

distribution of % XPX;TP' According to Ky Fan Inequality, we have
l|F_ - E || < l-rank[V X - % )] < l-rank(x - % )
P P —P P P P —P p p
1 1 Al
= . > Zne < s = o
=7 I{(19J) . Ixijl e zna i < py §< n}[ P £n9
where & means "denoted by." Write
_ 1 _ A1
n=PeUx,| 250 = °<H)'
From Hoeffding's Inequality, we get for p large enough
- > < —_
P(HF Fl[ €) P< gn_n/
é\Z €
<= 2exp§n<3/ /(ZH +n>}
\
< 2exp{-p €/2}, for ¥ € > 0. i
Thus,
F - F -0 2.S.. 4.2
i, - Fll (4.2)
Let
xij = Xij - Exij
and X = (X,.) =X - EX_ . Denote by F_ the spectral distribution of
P 1] P P P -
-% préTp' Again using Ky Fan's Inequality, we get
2 - 1
lF -F_ || <==+o0. (4.3)
P | (.

Therefore, to prove {Fp} has a limiting spectral distribution, we

need only to prove that {gp} has a limiting spectral distribution.




Now define

X EXI

=X,.I
13 7 *137 (1% [<L1ogn] [1%,4l<3logn]

and let

= (X

- 1 =
*p 150 B 77 ¥

and ?} be the spectral distribution of K?. From (3.4) we get

2. =
D (Fp, Fp) é 2 AIAZ (4.4)

where

P n 2
by = % !l Z vikx'kj> (Z Vikx'kj)

i=] j=1f k=1
1 P n P _ 2
2% % 121 321(kz v“‘(x“j ) xkj))'
We shall prove

b, + 2H, a.s. ' (4.5)

A2 -0, a.s.. (4.6)

If E (++-) = E(-+
T = {Tl’ TZ""}’ by independence and E(Xkj - ikj) = 0, we have
P
1 2 - = 2
"3 Z ZlvikE(xll RSP

1 - = |2 :
= S-tr TpE(Xll - xll) . 4.7

Recalling the definitions of X;; and Xj;, we have

*
ET can be defined precisely as follows. Given Borel function £(T,X), if

M 1s the probability distribution of X on the value space R of X, then

E f = Lf(r yXudX).
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|
ﬁ ;
N > - 2 >
& By - % = "ar(x111[|x11|>_.10gn]
) h < E;(fll[lx |>l10 n]
LY 11 -2 g 1
195 — |
R o) 502 1
o3 < 2Ex111[|X11|>_1_logn] + 2(EX;,) P([XHI > 5 log n)
a -2
2 2 1
v < 2Ex111[|x11|>__1_10gn] + 2Ex111=(|x11| > %4 log n)
¥ =3
B > 0. (p >=). (4.8)
‘, From (4.7) and (4.8), we have \
;.: ETA2 =0 (p *«), for almost all T. 4.9 !
L |
- Also, we have !
¥ Tp/ P ~ |
. 2 1| 2 \2 4
- E.(A, - ELA) < —1 ¥ vaE(X - X))
~ T %2 T Bt anLk=l LM/ P T
: (1 5k i
Y + 4 < v,, Vv > E(X ) >
Lodik. ik 11 11
1<k kgp\i=l 1 *¥2 |
| kla‘k2
\ \
{ ~ ~ 2
- 1)1 2 = |4 4 2 =
‘: < - {; tr TpE(Xu - X)) 4 > tr 'rpésoc11 - X / }
U
. -1 E(; -X )4(}1 + 0(1)) + O(p-z) for almost all T
P np 11 11 2 * *
—, Recalling the definitions of Xu and ill and -E +y > 0, we can prove
)
I that
A = = 4 4 2 4
-
W Hence
S E.(& - €. 8,32 <=, for almost all T. (4.10)
: T 72 T "2
3 pe1
- |
! J
: |
?

.Y T I Bt

N Rl R R R
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=]

1 4
—_ < y
Here we have used the fact that pzl pz Ex111[|X11|<K /;] » for anjy

K > 0 fixed.

(4.9) and (4.10) ensure that

Az >0 for almost all X, for almost all T. (4.11)

By Fubini's Theorem, we have proved (4.6). By the same approach, we can prove

(4.5). Hence, from (4.4) it follows that
DZ(Fp’ Fp) +0 a.s.. (4.12)

From (4.2), (4.3), (4.12), to prove {Fp} has a limit spectral distri-
bution, we need only to prove {f;} has a limit spectral distribution. For

simplicity, we drop the symbols imposed on X,, and Fp’ and we assume that

1]
1
(1) |x;,] < 5 logn

(2) Exij = (4.13)
(3) EX’, < 1 and EX>, * 1  (p +=)
ij - ij :
Note that Xij depends on p.

Now, we shall first prove that

k -1 I,
ET J x de(x) —x Ep cr(xpxprp) -

k
pn
K v k! n, n, n,
TR w21y ) ;ITTTT;;T;T Hy Hy oo WH 5,
p+> as p *+ o, for almost all T, (4.14)

where the inner summation is carried out over all nonnegative integer

solutions to the equations

n, + n +eccdn = k-w+1,

1 2

n, + 2n_+e+.-+wn = k, (4.15)
1 2 w
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For a given integer k > 1, let

oo
|

A .
= J xde Px) = 1 tr(Ak) - L tr(X X'T )k
P P onf PPP

-1
=% l%
n

. Xi . Xi o Xi - .‘.Xi . Xi o ti ¥ ti i . i 3
p 191 1231 1332 3432 2k-19% 121k 12%3 tuls 2kt

Here the summation is taken in such a way that il’ iz,...,i run over the

2k
set {1, 2,...,p} and Jys+++sd, TUD Over the set {1, 2,...,n}.
We have
1 X k
ER =—2 )t t ceet, . E T (X, . X . )
TP pnk & Rty g d g3 g
1 ¢ g ol
=—-—kz Z z t t. . .l‘t. . HEH (X. X )'

pr K rp,.lr, () 203 Ns oty w1 qea T2q-17v Toqt

Here

Z means the summation over all partitions A = {Al,...,Aw} of

the set {1,...,k},

Tsefeor means the summation for the indices T1se.+.,T, running over

{1, 2,...,n} but being kept distinct from each other;

X means the summation for il’ 12""’12k running over the set
(1)

' b {1’ 2,-..,p}.

I

7 But, by i.i.d., we have'

o | ' ‘

- ER =—— Jn(n-D...n-w+1)F¢e, .t . ...t

= Tp pnk A _ 1) 1213 iAiS iZkil

.':‘

;

;ﬁ TETN (Xi 1Xi 1).

val qeA,, "2¢-1°" T2q,

Rrd 1A

'3

Now let W be the partition of {1, 2,...,2k} induced by A, 1i.e.

w - {A*’ Ai’lo.’Ac}’ Where A; = U {ZS - 1, ZS}-
scA

—a
i

AN [

AT AT W S e e Py CRA Ty N T P T IPRT S S 2 ™ e P S AN e e T e
R R T R I R e Iﬁoﬁmﬁ}i}’}imm'r.om:-x-ni
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Let V = {Bl,...,Bv} be any partition of {1, 2,...,2k}. We say that

V is a refinement of W, if each Bb is a subset of some A;. We have

._—L
ER =——“2n(n-1)o-o(n-w+1)z 2 t t PR o
TP nk i ww (|v,w 2ty tgts ity
Y
I T E I X
= *
v=1 BﬁAv seBb s
Here
) is the summation for all partitiomns V of {1, 2,...,2k}which are
wWW
- refinements of W;
Z means the summation for il’ 12""’12k running over
1 |v,w

the set {1, 2,...,p} but subject to the condition that if b, b’

are in the same A; then i, = i , <= b, b' belong to the same

b b'
V-class.
|, |
Thus, E I x = Ex , and
il 11
SeB s
b
(n)
EgR, = ! I —¢ RO,DKM,
A KW pn
where
(n)w =nn-~1...n-w+1),
R(W,V) = t t eeot, .
@ |V 2ty tals iy
and
v [Bbl
K(V) = T Ex,,~ . (Note that K(V) = 0 if IBbl =1 for some b.)
b=1

Let A = {Al,...,Aw} be a partition of {1, 2,...,k}, W = {Af,...,A;}

where A% = ézk {2¢ =1, 2¢}, a=1,...,w. Let V= {Bl""’Bv} be any
a

partition of {1, 2,...,2k} such that V< W and IBbI‘: 2 for all b. We

define a graph (E,V,T,W) as follows. V is the vertex set, i.e. there are
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v

R SAAN

v vertices Bl""’B The edge set E = {el,...,ek} contains k edges.

s %2 s

The function I' : E » V x V is defined by F(ec) = {B(2c), B(2c + 1}, where

B(a) = B, iff a ¢ B . But 2k + 1 is regarded as 1.

It is easy to verify that T'(V,W) is an M-graph, if two vertices are

o
.

.
"
“
o
',
>,
b-.‘
.
e
'
Vo
®

defined to belong to the same class iff they are subsets of the same set A;.

By Lemma 3.8, it is easy to see that if [Bb[ > 2 for some b, then
R(W,V) = 0(pk_w), so by the obvious inequality:  R(V) = 0(log2kp),
(n)

k
pn

- (k+l-w) k-
( W)p W

¥ R(W,V)K(V) = 0(p (logp)?® = o(1), a.s.

So, we consider only those V for which each IBbl = 2, and the number of

cycles of I'(V,W) is just k = w + 1. Thus

=} J" —= R(W,K(V) + o(l), a.s.
A, KW pn
where 2" means the summation over those V = {Bb :b=1,...,v}, for which

\b =kand f=k ~w+ 1.

By the same argument as in Yin and Krishnaiah (1984)

k=w k! n, n, n,
] Tw! .
ETRp > E 2 y Z nylecen tw! H CHyou o GH for almost all T

w=1 n1+...+n =k-w+l

W
n1+2n2+...+wnw=k

1/2k

And it is easy to verify that Z E, = +o,

We will now prove that if Rp = I xdep(x). then

2 ET(R - Ep R ) < o for almost all T.
P

p=1 !
We have ‘
2 2 1
Var,(R ) = ER- - ER =—>1Y ¢t oot t ‘oot
TV T Te 2.2k RS R T O T Py POEAR A JOL PO
2k k 2k
EL (X~ X j)-1~:H(x g X gOE T 3 X 40
q=1 2q-1 q 2q q q=1 2q-1 q 2q q q=k+l1 2q-1 2q q/.

Here, 1,,...,1, Tun over the set {1, 2,...,p} and Jyseersiy, rTun over the
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set {1, 2,...,n}.

Let S, = {1, 2,...,k}, S, = {k + 1,...,2k}. If D is any set of

numbers, D* will denote the set () {2x - 1, 2x}L

xeD
We -lrave - .
1
Var R = 2 z
TP 522K X wiaxr ,...,r (1)|&*,V
- 1 1
t, ., t eeol t. eeol .
Ly ids ind) Toweotones Tartoust
‘w w
TEI X - NJIET X E I X
a=1 qeA¥* iqra a=l| qeA*nS* qra qEA* NS iqra
a a 1 a "2
_ 1
T2 21<z }
paTT A WA* r ..., (1)[A%,V
€, . ...t t T
137 ity toatoes” T Lartors
r %]
v |B,| v T |Bnsyl an52|
I Exll I LEXg 4 Ex11 J
b=1 b=1L
Here
z means summation over all possible partitions A = {Al,...,Aw}
A of {1, 2,...,2k},
Z means summation over all possible partitions V of {1, 2,...,4k}
WK A*
- which 1is a refinement of A* = {Af"--’A3}~
g means the summation for T s...,r, Tunning over the set {1, 2,...,n},

but being kept different from each other;

) means the summation for 1),...,1,, Tunning over the set {1, 2,...,p}
(1) |[A*,v
but if c,c' belong to the same class A; then ic = %2,,iff c,c'
belong to a same class Bb.
So, if

...............

e - - - . I S B B S T P N o AL T Ry LTI AR
.;-1"1 \”l:‘t:d' -;_“ _-\. ...... . -: n > . e R e < --:."\..‘ L e -."-. IR \".‘-."';-. ik q.'(‘.. W\ ‘\‘\. &
A CLES S0 Bt 7 AN - g oy, " . y . - I . <. ' »

Cy . . - - C N e
M B e o e M A B g a8 MG I e S S A oMM B OSSO S A~ Al S AU S S R L S A CabiCl Ll i et A AU A
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v |8 | v |B, S*| |B_ s
RK(V) = I Exllb il Exllb L Exub 2 ,
b=1 b=1
. R(A*,V) = }oot, .t cest, t . ceet,
- () |ar,v F2i3 s indy Inolngs T ladtoke
(n)w =a(n- D...n-w+ 1),
cy then
5 1]
e, Var, R = ———— RA*,V)K(V).
: T A KA* pzn2k

We may suppose that

1. [B | > 2 for all b,

b
2. at least for one b, IBb(\ s%

B, N sx| 4 o.

For, otherwise K(V) = 0.

N

o Now for each pair of partitions A = {Al,...,Aw} of {1, 2,...,2k}

ii and V = {Bl,...,Bv} of {1, 2,...,4k} such that V< A* = {AT,...,A;}. We

construct a graph G(A*,V) as follows:
(1) the vertex set is V,

' (2) there are 2k edges S ERRETLIE E = {el,...,e2k}

. (3) T: E-VXVis defined as follows:

N ['(e;) = {B(2), B(3)}, I'(ey)) = {B(4), B(5)},...,T(e) = {B(2k), B(1)}
,:; F(ek+1) = {B(2k+2), B(2k + 3)L...,P(e2k) = {B(4k), B(2k + 1) }.
:5 Here B(a) f Bb iff a € Bb’

‘ = . * =

- (4) Classes are c, {Bb : B, & Aa}’ a=1,...,Ww.

f? It is easy to verify that G(A*,V) is an M-graph. It is class-

:;: connected owing to 2,

- 2k-w)

o Now we show that R(A*,V) = O(p .

? Case 1 there exists b such that le| > 2, Then by Lemma 3.8, we
.

b have R(A*,V) = 0(p2k-w). |
N |
3

' .I

N

*

., - [P I
AN RO e e

» ":'\-" -~ “n.;‘-\:‘b_‘
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Case 2 |Bbl = 2 for all b. Consider the b, for which [an S’ff’fBb
number of mixed vertex.

Now our graph G(A*,B) is a Q-graph. We are going to show that it is

not maximal, i.e. the number of cycles < 2k - w,

Suppose it is maximal. Then, we know that any free cycle cannot meet

bﬁi a class at more than one vertex.

Let B(l) be a mixed vertex in the class C(l). Let Z(l) be the free
~ycle containing B(l). Z(l) must contain another mixed vertex B(l)
gD g (D) Suppose 3D ¢ class ¢P,

' & . 2 A
' ) 2) D12}
. . 4, N aia/ed il
. . Z . b< — , >@3)
T - - FE . -
C () C—,(a) Ccs)
C(z) contains another mixed vertex B(z). B(z) belongs to a cycle 2(2)'
2(2) # Z(l). 2(2) has another mixed vertex B(z). B(Z) class C(3),

C(3) # C(z) C(3) has another mixed vertex 3(3), B(B)

L) 3 4 @)

belongs to cycle

Because there are only finitely many cycles and classes. We may
suppose Z(l),...,Z(a) are different and Z(a+1) = Z(l). But for maximal
Q-graph, such sitﬁation can't occur,

So G(A*,B) is not a maximal Q-graph and

R(a%,V) = 0(pZK"™

TR Ry AT R TSIV SRS AN

ns

*
2

Such a vertex will be called mixed. It is evident that any class has even

LR

#

~
w Wt .

o 0 . ; RO
ﬁ\n.é.r}.m s ..', J-".* .‘.- A -( e -’. (._-'*‘_? " - »-. L ‘Mf BN ‘”,«,MMWMu' . )*.Lm;wmm Ah’hgh.)n.

c.
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Thus,
‘ (n)
VarTR = z Z 5 gk 0( 2k w)K(V)
P4 <A* pn
e (1o 2)2k
v = 06—-—% ). a.s.
P
and from this it is easy to deduce that
S 2
JER - ER) <®, for almost all T.
p=1 P TP

So, the conclusion of Theorem 2.1 follows.
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